1
IIT-JEE 2006
MCQ (More than One Correct Answer)
+5
-1.25
Let $$f\left( x \right) = \left\{ {\matrix{
{{e^x},} & {0 \le x \le 1} \cr
{2 - {e^{x - 1}},} & {1 < x \le 2} \cr
{x - e,} & {2 < x \le 3} \cr
} } \right.$$ and $$g\left( x \right) = \int\limits_0^x {f\left( t \right)dt,x \in \left[ {1,3} \right]} $$
then $$g(x)$$ has
then $$g(x)$$ has
2
IIT-JEE 2006
Subjective
+6
-0
For a twice differentiable function $$f(x),g(x)$$ is defined as $$4\sqrt {65} g\left( x \right) = \left( {f'{{\left( x \right)}^2} + f''\left( x \right)} \right)\,\,f\left( x \right)$$ on $$\,\,\,\left[ {a,\,\,\,e} \right].$$ If for $$a < b < c < d < e,\,f\left( a \right) = 0,f\left( b \right) = 2,f\left( c \right) = - 1,f\left( d \right) = 2,f\left( e \right) = 0$$ then find the minimum number of zeros of $$g(x)$$.
3
IIT-JEE 2006
Subjective
+6
-0
The value of $$5050{{\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}} dx} \over {\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}} dx}}$$ is.
4
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
A student performs an experiment for determination of $$\mathrm g\left(=\frac{4\mathrm\pi^2\mathcal l}{\mathrm T^2}\right)$$.
The error in length $$\mathcal l$$ is $$\triangle\mathcal l$$ and in the time T is $$\triangle\mathrm T$$ and n is number of times the reading is taken.The reading of g is most accurate for
Paper analysis
Total Questions
Chemistry
5
Mathematics
32
Physics
3
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978