1
IIT-JEE 2006
Subjective
+6
-0
Match the folowing :
(A)$$\,\,\,$$Two rays $$x + y = \left| a \right|$$ and $$ax - y=1$$ intersects each other in the
$$\,\,\,\,\,\,\,\,\,\,$$first quadrant in interval $$a \in \left( {{a_0},\,\,\infty } \right),$$ the value of $${{a_0}}$$ is
(B)$$\,\,\,$$ Point $$\left( {\alpha ,\beta ,\gamma } \right)$$ lies on the plane $$x+y+z=2.$$
$$\,\,\,\,\,\,\,\,\,\,\,$$Let $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k,\widehat k \times \left( {\widehat k \times \overrightarrow a } \right) = 0,$$ then $$\gamma = $$
(C)$$\,\,\,$$$$\left| {\int\limits_0^1 {\left( {1 - {y^2}} \right)dy} } \right| + \left| {\int\limits_1^0 {\left( {{y^2} - 1} \right)dy} } \right|$$
(D)$$\,\,\,$$If $$\sin A\,\,\sin B\,\,\sin C + \cos A\,\,\cos B = 1,$$ then the value of $$\sin C = $$

(p)$$\,\,\,$$ $$2$$
(q)$$\,\,\,$$ $${4 \over 3}$$
(r)$$\,\,\,$$ $$\left| {\int\limits_0^1 {\sqrt {1 - xdx} } } \right| + \left| {\int\limits_{ - 1}^0 {\sqrt {1 + xdx} } } \right|$$
(s)$$\,\,\,$$ $$1$$

2
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
$$\int {{{{x^2} - 1} \over {{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx = } $$
A
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x^2}}} + c$$
B
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x^3}}} + c$$
C
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x}}} + c$$
D
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{2x^2}}} + c$$
3
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
If $${{w - \overline w z} \over {1 - z}}$$ is purely real where $$w = \alpha + i\beta ,$$ $$\beta \ne 0$$ and $$z \ne 1,$$ then the set of the values of z is
A
$$\left\{ {z:\left| z \right| = 1} \right\}$$
B
$$\left\{ {z:z = \overline z } \right\}$$
C
$$\left\{ {z:z \ne 1} \right\}\,\,$$
D
$$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$$
4
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
Let $$a,\,b,\,c$$ be the sides of triangle where $$a \ne b \ne c$$ and $$\lambda \in R$$.
If the roots of the equation $${x^2} + 2\left( {a + b + c} \right)x + 3\lambda \left( {ab + bc + ca} \right) = 0$$ are real, then
A
$$\lambda < {4 \over 3}$$
B
$$\lambda > {5 \over 3}$$
C
$$\lambda \in \left( {{1 \over 3},\,{5 \over 3}} \right)$$
D
$$\lambda \in \left( {{4 \over 3},\,{5 \over 3}} \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12