1
IIT-JEE 2006
Subjective
+6
-0
Match the folowing :
(A)$$\,\,\,$$Two rays $$x + y = \left| a \right|$$ and $$ax - y=1$$ intersects each other in the
$$\,\,\,\,\,\,\,\,\,\,$$first quadrant in interval $$a \in \left( {{a_0},\,\,\infty } \right),$$ the value of $${{a_0}}$$ is
(B)$$\,\,\,$$ Point $$\left( {\alpha ,\beta ,\gamma } \right)$$ lies on the plane $$x+y+z=2.$$
$$\,\,\,\,\,\,\,\,\,\,\,$$Let $$\overrightarrow a = \alpha \widehat i + \beta \widehat j + \gamma \widehat k,\widehat k \times \left( {\widehat k \times \overrightarrow a } \right) = 0,$$ then $$\gamma = $$
(C)$$\,\,\,$$$$\left| {\int\limits_0^1 {\left( {1 - {y^2}} \right)dy} } \right| + \left| {\int\limits_1^0 {\left( {{y^2} - 1} \right)dy} } \right|$$
(D)$$\,\,\,$$If $$\sin A\,\,\sin B\,\,\sin C + \cos A\,\,\cos B = 1,$$ then the value of $$\sin C = $$

(p)$$\,\,\,$$ $$2$$
(q)$$\,\,\,$$ $${4 \over 3}$$
(r)$$\,\,\,$$ $$\left| {\int\limits_0^1 {\sqrt {1 - xdx} } } \right| + \left| {\int\limits_{ - 1}^0 {\sqrt {1 + xdx} } } \right|$$
(s)$$\,\,\,$$ $$1$$

2
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
$$\int {{{{x^2} - 1} \over {{x^3}\sqrt {2{x^4} - 2{x^2} + 1} }}dx = } $$
A
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x^2}}} + c$$
B
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x^3}}} + c$$
C
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{x}}} + c$$
D
$${{\sqrt {2{x^4} - 2{x^2} + 1} } \over {{2x^2}}} + c$$
3
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
If $${{w - \overline w z} \over {1 - z}}$$ is purely real where $$w = \alpha + i\beta ,$$ $$\beta \ne 0$$ and $$z \ne 1,$$ then the set of the values of z is
A
$$\left\{ {z:\left| z \right| = 1} \right\}$$
B
$$\left\{ {z:z = \overline z } \right\}$$
C
$$\left\{ {z:z \ne 1} \right\}\,\,$$
D
$$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$$
4
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
Let $$a,\,b,\,c$$ be the sides of triangle where $$a \ne b \ne c$$ and $$\lambda \in R$$.
If the roots of the equation $${x^2} + 2\left( {a + b + c} \right)x + 3\lambda \left( {ab + bc + ca} \right) = 0$$ are real, then
A
$$\lambda < {4 \over 3}$$
B
$$\lambda > {5 \over 3}$$
C
$$\lambda \in \left( {{1 \over 3},\,{5 \over 3}} \right)$$
D
$$\lambda \in \left( {{4 \over 3},\,{5 \over 3}} \right)$$
JEE Advanced Papers
EXAM MAP