1
IIT-JEE 2006
MCQ (More than One Correct Answer)
+5
-1.25
Let a hyperbola passes through the focus of the ellipse $${{{x^2}} \over {25}} + {{{y^2}} \over {16}} = 1$$. The transverse and conjugate axes of this hyperbola coincide with the major and minor axes of the given ellipse, also the produced of eccentricities of given ellipse and hyperbola is $$1$$, then
A
the equation of hyperbola is $${{{x^2}} \over 9} + {{{y^2}} \over {16}} = 1$$
B
the equation of hyperbola is $${{{x^2}} \over 9} + {{{y^2}} \over {25}} = 1$$
C
focus of hyperbola is $$(5, 0)$$
D
vertex of hyperbola is $$\left( {5\sqrt 3 ,0} \right)$$
2
IIT-JEE 2006
MCQ (Single Correct Answer)
+6
-1.5
Match the following : $$(3, 0)$$ is the pt. from which three normals are drawn to the parabola $${y^2} = 4x$$ which meet the parabola in the points $$P, Q $$ and $$R$$. Then

Column $${\rm I}$$
(A) Area of $$\Delta PQR$$
(B) Radius of circumcircle of $$\Delta PQR$$
(C) Centroid of $$\Delta PQR$$
(D) Circumcentre of $$\Delta PQR$$

Column $${\rm I}$$$${\rm I}$$
(p) $$2$$
(q) $$5/2$$
(r) $$(5/2, 0)$$
(s) $$(2/3, 0)$$

A
$$\left( A \right) - \left( p \right),\left( B \right) - \left( q \right),\left( C \right) - \left( s \right),\left( D \right) - \left( r \right)$$
B
$$\left( A \right) - \left( p \right),\left( B \right) - \left( q \right),\left( C \right) - \left( r \right),\left( D \right) - \left( s \right)$$
C
$$\left( A \right) - \left( s \right),\left( B \right) - \left( r \right),\left( C \right) - \left( p \right),\left( D \right) - \left( q \right)$$
D
$$\left( A \right) - \left( r \right),\left( B \right) - \left( s \right),\left( C \right) - \left( q \right),\left( D \right) - \left( p \right)$$
3
IIT-JEE 2006
MCQ (Single Correct Answer)
+3
-0.75
One angle of an isosceles $$\Delta $$ is $${120^ \circ }$$ and radius of its incircle $$ = \sqrt 3 $$. Then the area of the triangle in sq. units is
A
$$7 + 12\sqrt 3 $$
B
$$12 - 7\sqrt 3 $$
C
$$12 + 7\sqrt 3 $$
D
$$4\pi $$
4
IIT-JEE 2006
MCQ (More than One Correct Answer)
+5
-1.25
In $$\Delta ABC$$, internal angle bisector of $$\angle A$$ meets side $$BC$$ in $$D$$. $$DE \bot AD$$ meets $$AC$$ in $$E$$ and $$AB$$ in $$F$$. Then
A
$$AE$$ is $$HM$$ of $$b$$ and $$c$$
B
$$AD$$ $$ = {{2bc} \over {b + c}}\cos {A \over 2}$$
C
$$EF$$ $$ = {{4bc} \over {b + c}}\sin {A \over 2}$$
D
$$\Delta AEF$$ is isosceles
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12