1
IIT-JEE 2003
Subjective
+4
-0
Normals are drawn from the point $$P$$ with slopes $${m_1}$$, $${m_2}$$, $${m_3}$$ to the parabola $${y^2} = 4x$$. If locus of $$P$$ with $${m_1}$$ $${m_2}$$$$ = \alpha $$ is a part of the parabola itself then find $$\alpha $$.
2
IIT-JEE 2003
Subjective
+2
-0
For the circle $${x^2}\, + \,{y^2} = {r^2}$$, find the value of r for which the area enclosed by the tangents drawn from the point P (6, 8) to the circle and the chord of contact is maximum.
3
IIT-JEE 2003
Subjective
+4
-0
If a, b, c are in A.P., $${a^2}$$, $${b^2}$$, $${c^2}$$ are in H.P., then prove that either a = b = c or a, b, $${ - {c \over 2}}$$ form a G.P.
4
IIT-JEE 2003
Subjective
+2
-0
Prove that
$${2^k}\left( {\matrix{ n \cr 0 \cr } } \right)\left( {\matrix{ n \cr k \cr } } \right) - {2^{^{k - 1}\left( {\matrix{ n \cr 2 \cr } } \right)}}\left( {\matrix{ n \cr 1 \cr } } \right)\left( {\matrix{ {n - 1} \cr {k - 1} \cr } } \right)$$
$$ + {2^{k - 2}}\left( {\matrix{ {n - 2} \cr {k - 2} \cr } } \right) - .....{\left( { - 1} \right)^k}\left( {\matrix{ n \cr k \cr } } \right)\left( {\matrix{ {n - k} \cr 0 \cr } } \right) = {\left( {\matrix{ n \cr k \cr } } \right)^ \cdot }$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12