1
IIT-JEE 2003
Subjective
+4
-0
(i) Find the equation of the plane passing through the points $$(2, 1, 0), (5, 0, 1)$$ and $$(4, 1, 1).$$
(ii) If $$P$$ is the point $$(2, 1, 6)$$ then find the point $$Q$$ such that $$PQ$$ is perpendicular to the plane in (i) and the mid point of $$PQ$$ lies on it.
2
IIT-JEE 2003
Subjective
+4
-0
If $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w ,$$ are three non-coplanar unit vectors and $$\alpha ,\beta ,\gamma $$ are the angles between $$\overrightarrow u $$ and $$\overrightarrow v $$ and $$\overrightarrow w ,$$ $$\overrightarrow w $$ and $$\overrightarrow u $$ respectively and $$\overrightarrow x ,\overrightarrow y ,\overrightarrow z ,$$ are unit vectors along the bisectors of the angles $$\alpha ,\,\,\beta ,\,\,\gamma $$ respectively. Prove that $$\,\left[ {\overrightarrow x \times \overrightarrow y \,\,\overrightarrow y \times \overrightarrow z \,\,\overrightarrow z \times \overrightarrow x } \right] = {1 \over {16}}{\left[ {\overrightarrow u \,\,\overrightarrow v \,\,\overrightarrow w } \right]^2}\,{\sec ^2}{\alpha \over 2}{\sec ^2}{\beta \over 2}{\sec ^2}{\gamma \over 2}.$$
3
IIT-JEE 2003
Subjective
+2
-0
For a student to qualify, he must pass at least two out of three exams. The probability that he will pass the 1st exam is $$p.$$ If he fails in one of the exams then the probability of his passing in the next exam is $${p \over 2}$$ otherwise it remains the same. Find the probability that he will qualify.
4
IIT-JEE 2003
Subjective
+2
-0
$$A$$ is targeting to $$B, B$$ and $$C$$ are targeting to $$A.$$ Probability of hitting the target by $$A,B$$ and $$C$$ are $${2 \over 3},{1 \over 2}$$ and $${1 \over 3}$$ respectively. If $$A$$ is hit then find the probability that $$B$$ hits the target and $$C$$ does not.
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12