1
IIT-JEE 2003
Subjective
+4
-0
If the function $$f:\left[ {0,4} \right] \to R$$ is differentiable then show that
(i)$$\,\,\,\,\,$$ For $$a, b$$$$\,\,$$$$ \in \left( {0,4} \right),{\left( {f\left( 4 \right)} \right)^2} - {\left( {f\left( 0 \right)} \right)^2} = gf'\left( a \right)f\left( b \right)$$
(ii)$$\,\,\,\,\,$$ $$\int\limits_0^4 {f\left( t \right)dt = 2\left[ {\alpha f\left( {{\alpha ^2}} \right) + \beta \left( {{\beta ^2}} \right)} \right]\forall 0 < \alpha ,\beta < 2} $$
(i)$$\,\,\,\,\,$$ For $$a, b$$$$\,\,$$$$ \in \left( {0,4} \right),{\left( {f\left( 4 \right)} \right)^2} - {\left( {f\left( 0 \right)} \right)^2} = gf'\left( a \right)f\left( b \right)$$
(ii)$$\,\,\,\,\,$$ $$\int\limits_0^4 {f\left( t \right)dt = 2\left[ {\alpha f\left( {{\alpha ^2}} \right) + \beta \left( {{\beta ^2}} \right)} \right]\forall 0 < \alpha ,\beta < 2} $$
2
IIT-JEE 2003
Subjective
+4
-0
Using the relation $$2\left( {1 - \cos x} \right) < {x^2},\,x \ne 0$$ or otherwise,
prove that $$\sin \left( {\tan x} \right) \ge x,\,\forall x \in \left[ {0,{\pi \over 4}} \right]$$
prove that $$\sin \left( {\tan x} \right) \ge x,\,\forall x \in \left[ {0,{\pi \over 4}} \right]$$
3
IIT-JEE 2003
Subjective
+2
-0
Find a point on the curve $${x^2} + 2{y^2} = 6$$ whose distance from
the line $$x+y=7$$, is minimum.
the line $$x+y=7$$, is minimum.
4
IIT-JEE 2003
Subjective
+4
-0
If $${I_n}$$ is the area of $$n$$ sided regular polygon inscribed in a circle of unit radius and $${O_n}$$ be the area of the polygon circumscribing the given circle, prove that
$$${I_n} = {{{O_n}} \over 2}\left( {1 + \sqrt {1 - {{\left( {{{2{I_n}} \over n}} \right)}^2}} } \right)$$$
Paper analysis
Total Questions
Chemistry
5
Mathematics
18
Physics
1
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978