1
IIT-JEE 2003
Subjective
+2
-0
Calculate the molarity of water if it's density is 1000 kg/m3
2
IIT-JEE 2003
Subjective
+2
-0
If $$f$$ is an even function then prove that
$$\int\limits_0^{\pi /2} {f\left( {\cos 2x} \right)\cos x\,dx = \sqrt 2 } \int\limits_0^{\pi /4} {f\left( {\sin 2x} \right)\cos x\,dx.} $$
$$\int\limits_0^{\pi /2} {f\left( {\cos 2x} \right)\cos x\,dx = \sqrt 2 } \int\limits_0^{\pi /4} {f\left( {\sin 2x} \right)\cos x\,dx.} $$
3
IIT-JEE 2003
Subjective
+4
-0
(i) Find the equation of the plane passing through the points $$(2, 1, 0), (5, 0, 1)$$ and $$(4, 1, 1).$$
(ii) If $$P$$ is the point $$(2, 1, 6)$$ then find the point $$Q$$ such that $$PQ$$ is perpendicular to the plane in (i) and the mid point of $$PQ$$ lies on it.
(ii) If $$P$$ is the point $$(2, 1, 6)$$ then find the point $$Q$$ such that $$PQ$$ is perpendicular to the plane in (i) and the mid point of $$PQ$$ lies on it.
4
IIT-JEE 2003
Subjective
+4
-0
If $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w ,$$ are three non-coplanar unit vectors and $$\alpha ,\beta ,\gamma $$ are the angles between $$\overrightarrow u $$ and $$\overrightarrow v $$ and $$\overrightarrow w ,$$ $$\overrightarrow w $$ and $$\overrightarrow u $$ respectively and $$\overrightarrow x ,\overrightarrow y ,\overrightarrow z ,$$ are unit vectors along the bisectors of the angles $$\alpha ,\,\,\beta ,\,\,\gamma $$ respectively. Prove that $$\,\left[ {\overrightarrow x \times \overrightarrow y \,\,\overrightarrow y \times \overrightarrow z \,\,\overrightarrow z \times \overrightarrow x } \right] = {1 \over {16}}{\left[ {\overrightarrow u \,\,\overrightarrow v \,\,\overrightarrow w } \right]^2}\,{\sec ^2}{\alpha \over 2}{\sec ^2}{\beta \over 2}{\sec ^2}{\gamma \over 2}.$$
Paper analysis
Total Questions
Chemistry
5
Mathematics
18
Physics
1
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978