1
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
Let $$0 < \alpha < {\pi \over 2}$$ be fixed angle. If $$P = \left( {\cos \theta ,\,\sin \theta } \right)$$ and $$Q = \left( {\cos \left( {\alpha - \theta } \right),\,\sin \left( {\alpha - \theta } \right)} \right),$$ then $$Q$$ is obtained from $$P$$ by
A
clockwise rotation around origin through an angle $$\alpha $$
B
anticlockwise rotation around origin through an angle $$\alpha $$
C
reflection in the line through origin with slope tan $$\alpha $$
D
reflection in the line through origin with slope tan $$\left( {\alpha /2} \right)$$
2
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+2
-0.5
Suppose $$a, b, c$$ are in A.P. and $${a^2},{b^2},{c^2}$$ are in G.P. If $$a < b < c$$ and $$a + b + c = {3 \over 2},$$ then the value of $$a$$ is
A
$${1 \over {2\sqrt 2 }}$$
B
$${1 \over {2\sqrt 3 }}$$
C
$${1 \over 2} - {1 \over {\sqrt 3 }}$$
D
$${1 \over 2} - {1 \over {\sqrt 2 }}$$
3
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+2
-0.5
The number of arrangements of the letters of the word BANANA in which the two N's do not appear adjacently is
A
40
B
60
C
80
D
100
4
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+2
-0.5
The sum $$\sum\limits_{i = 0}^m {\left( {\matrix{ {10} \cr i \cr } } \right)\left( {\matrix{ {20} \cr {m - i} \cr } } \right),\,\left( {where\left( {\matrix{ p \cr q \cr } } \right) = 0\,\,if\,\,p < q} \right)} $$ is maximum when $$m$$ is
A
5
B
10
C
15
D
20
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12