1
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx} $$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$ is

A
$$3/2I$$
B
$$2I$$
C
$$3I$$
D
$$6I$$
2
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
Let $$T>0$$ be a fixed real number . Suppose $$f$$ is a continuous
function such that for all $$x \in R$$, $$f\left( {x + T} \right) = f\left( x \right)$$.

If $$I = \int\limits_0^T {f\left( x \right)dx} $$ then the value of $$\int\limits_3^{3 + 3T} {f\left( {2x} \right)dx} $$ is

A
$$3/2I$$
B
$$2I$$
C
$$3I$$
D
$$6I$$
3
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
Let $$f\left( x \right) = \int\limits_1^x {\sqrt {2 - {t^2}} \,dt.} $$ Then the real roots of the equation
$${x^2} - f'\left( x \right) = 0$$ are
A
$$ \pm 1$$
B
$$ \pm {1 \over {\sqrt 2 }}$$
C
$$ \pm {1 \over 2}$$
D
$$0$$ and $$1$$
4
IIT-JEE 2002 Screening
MCQ (Single Correct Answer)
+3
-0.75
The integral $$\int\limits_{ - 1/2}^{1/2} {\left( {\left[ x \right] + \ell n\left( {{{1 + x} \over {1 - x}}} \right)} \right)dx} $$ equal to
A
$$ - {1 \over 2}$$
B
$$0$$
C
$$1$$
D
$$2\ell n\left( {{1 \over 2}} \right)$$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12