1
IIT-JEE 1998
MCQ (Single Correct Answer)
+2
-0.5
If $${a_n} = \sum\limits_{r = 0}^n {{1 \over {{}^n{C_r}}},\,\,\,then\,\,\,\sum\limits_{r = 0}^n {{r \over {{}^n{C_r}}}} } $$ equals
A
$$\left( {n - 1} \right){a_n}$$
B
$$n{a_n}$$
C
$${1 \over 2}n{a_n}$$
D
None of the above
2
IIT-JEE 1998
MCQ (Single Correct Answer)
+2
-0.5
Number of divisor of the form 4$$n$$$$ + 2\left( {n \ge 0} \right)$$ of the integer 240 is
A
4
B
8
C
10
D
3
3
IIT-JEE 1998
Subjective
+2
-0
Prove that $$\tan \,\alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\cot 8\alpha = \cot \alpha $$
4
IIT-JEE 1998
MCQ (Single Correct Answer)
+2
-0.5
The number of values of $$x\,\,$$ in the interval $$\left[ {0,\,5\pi } \right]$$ satisfying the equation $$3\,{\sin ^2}x - 7\,\sin \,x + 2 = 0$$ is
A
0
B
5
C
6
D
10
JEE Advanced Papers
EXAM MAP