1
IIT-JEE 1998
MCQ (More than One Correct Answer)
+2
-0.5
If the circle $${x^2}\, + \,{y^2} = \,{a^2}$$ intersects the hyperbola $$xy = {c^2}$$ in four points $$P\,({x_1},\,{y_1}),\,Q\,\,({x_2},\,{y_2}),\,\,R\,({x_3},\,{y_3}),\,S\,({x_4},\,{y_4}),$$ then
A
$${x_1}\, + \,{x_2} + \,{x_3}\, + \,{x_4}\, = 0$$
B
$${y_1}\, + \,{y_2} + \,{y_3}\, + \,{y_4}\, = 0$$
C
$${x_1}\,{x_2}\,{x_3}\,{x_4}\, = {c^4}$$
D
$${y_1}\,{y_2}\,{y_3}\,{y_4}\, = {c^4}$$
2
IIT-JEE 1998
MCQ (Single Correct Answer)
+2
-0.5
If $${a_n} = \sum\limits_{r = 0}^n {{1 \over {{}^n{C_r}}},\,\,\,then\,\,\,\sum\limits_{r = 0}^n {{r \over {{}^n{C_r}}}} } $$ equals
A
$$\left( {n - 1} \right){a_n}$$
B
$$n{a_n}$$
C
$${1 \over 2}n{a_n}$$
D
None of the above
3
IIT-JEE 1998
MCQ (Single Correct Answer)
+2
-0.5
Number of divisor of the form 4$$n$$$$ + 2\left( {n \ge 0} \right)$$ of the integer 240 is
A
4
B
8
C
10
D
3
4
IIT-JEE 1998
Subjective
+2
-0
Prove that $$\tan \,\alpha + 2\tan 2\alpha + 4\tan 4\alpha + 8\cot 8\alpha = \cot \alpha $$
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12