1
IIT-JEE 1998
Subjective
+8
-0
Suppose $$f(x)$$ is a function satisfying the following conditions
(a) $$f(0)=2,f(1)=1$$,
(b) $$f$$has a minimum value at $$x=5/2$$, and
(c) for all $$x$$, $$$f'\left( x \right) = \matrix{ {2ax} & {2ax - 1} & {2ax + b + 1} \cr b & {b + 1} & { - 1} \cr {2\left( {ax + b} \right)} & {2ax + 2b + 1} & {2ax + b} \cr } $$$
where $$a,b$$ are some constants. Determine the constants $$a, b$$ and the function $$f(x)$$.
(a) $$f(0)=2,f(1)=1$$,
(b) $$f$$has a minimum value at $$x=5/2$$, and
(c) for all $$x$$, $$$f'\left( x \right) = \matrix{ {2ax} & {2ax - 1} & {2ax + b + 1} \cr b & {b + 1} & { - 1} \cr {2\left( {ax + b} \right)} & {2ax + 2b + 1} & {2ax + b} \cr } $$$
where $$a,b$$ are some constants. Determine the constants $$a, b$$ and the function $$f(x)$$.
2
IIT-JEE 1998
Subjective
+8
-0
A curve $$C$$ has the property that if the tangent drawn at any point $$P$$ on $$C$$ meets the co-ordinate axes at $$A$$ and $$B$$, then $$P$$ is the mid-point of $$AB$$. The curve passes through the point $$(1, 1)$$. Determine the equation of the curve.
3
IIT-JEE 1998
MCQ (More than One Correct Answer)
+2
-0.5
Let $$h\left( x \right) = f\left( x \right) - {\left( {f\left( x \right)} \right)^2} + {\left( {f\left( x \right)} \right)^3}$$ for every real number $$x$$. Then
4
IIT-JEE 1998
MCQ (Single Correct Answer)
+2
-0.5
If $$f\left( x \right) = {{{x^2} - 1} \over {{x^2} + 1}},$$ for every real number $$x$$, then the minimum value of $$f$$
Paper analysis
Total Questions
Chemistry
16
Mathematics
50
Physics
2
More papers of JEE Advanced
JEE Advanced 2024 Paper 2 Online
JEE Advanced 2024 Paper 1 Online
JEE Advanced 2023 Paper 2 Online
JEE Advanced 2023 Paper 1 Online
JEE Advanced 2022 Paper 2 Online
JEE Advanced 2022 Paper 1 Online
JEE Advanced 2021 Paper 2 Online
JEE Advanced 2021 Paper 1 Online
JEE Advanced 2020 Paper 2 Offline
JEE Advanced 2020 Paper 1 Offline
JEE Advanced 2019 Paper 2 Offline
JEE Advanced 2019 Paper 1 Offline
JEE Advanced 2018 Paper 2 Offline
JEE Advanced 2018 Paper 1 Offline
JEE Advanced 2017 Paper 2 Offline
JEE Advanced 2017 Paper 1 Offline
JEE Advanced 2016 Paper 2 Offline
JEE Advanced 2016 Paper 1 Offline
JEE Advanced 2015 Paper 2 Offline
JEE Advanced 2015 Paper 1 Offline
JEE Advanced 2014 Paper 2 Offline
JEE Advanced 2014 Paper 1 Offline
JEE Advanced 2013 Paper 2 Offline
JEE Advanced 2013 Paper 1 Offline
IIT-JEE 2012 Paper 2 Offline
IIT-JEE 2012 Paper 1 Offline
IIT-JEE 2011 Paper 1 Offline
IIT-JEE 2011 Paper 2 Offline
IIT-JEE 2010 Paper 1 Offline
IIT-JEE 2010 Paper 2 Offline
IIT-JEE 2009 Paper 2 Offline
IIT-JEE 2009 Paper 1 Offline
IIT-JEE 2008 Paper 2 Offline
IIT-JEE 2008 Paper 1 Offline
IIT-JEE 2007
IIT-JEE 2007 Paper 2 Offline
IIT-JEE 2006 Screening
IIT-JEE 2006
IIT-JEE 2005 Screening
IIT-JEE 2005
IIT-JEE 2004
IIT-JEE 2004 Screening
IIT-JEE 2003
IIT-JEE 2003 Screening
IIT-JEE 2002 Screening
IIT-JEE 2002
IIT-JEE 2001
IIT-JEE 2001 Screening
IIT-JEE 2000 Screening
IIT-JEE 2000
IIT-JEE 1999 Screening
IIT-JEE 1999
IIT-JEE 1998
IIT-JEE 1998 Screening
IIT-JEE 1997
IIT-JEE 1996
IIT-JEE 1995
IIT-JEE 1995 Screening
IIT-JEE 1994
IIT-JEE 1993
IIT-JEE 1992
IIT-JEE 1991
IIT-JEE 1990
IIT-JEE 1989
IIT-JEE 1988
IIT-JEE 1987
IIT-JEE 1986
IIT-JEE 1985
IIT-JEE 1984
IIT-JEE 1983
IIT-JEE 1982
IIT-JEE 1981
IIT-JEE 1980
IIT-JEE 1979
IIT-JEE 1978
JEE Advanced
Papers
2020
2019
2018
2017
2016
1997
1996
1994
1993
1992
1991
1990
1989
1988
1987
1986
1985
1984
1983
1982
1981
1980
1979
1978