1
IIT-JEE 1993
Subjective
+5
-0
An observer at $$O$$ notices that the angle of elevation of the top of a tower is $${30^ \circ }$$. The line joining $$O$$ to the base of the tower makes an angle of $${\tan ^{ - 1}}\left( {1/\sqrt 2 } \right)$$ with the North and is inclined Eastwards. The observer travels a distance of $$300$$ meters towards the North to a point A and finds the tower to his East. The angle of elevation of the top of the tower at $$A$$ is $$\phi $$, Find $$\phi $$ and the height of the tower.
2
IIT-JEE 1993
MCQ (More than One Correct Answer)
+2
-0.5
If $$f\left( x \right) = \left\{ {\matrix{ {3{x^2} + 12x - 1,} & { - 1 \le x \le 2} \cr {37 - x} & {2 < x \le 3} \cr } } \right.$$ then:
A
$$f(x)$$ is increasing on $$\left[ { - 1,2} \right]$$
B
$$f(x)$$ is continues on $$\left[ { - 1,3} \right]$$
C
$$f'(2)$$ does not exist
D
$$f(x)$$ has the maximum value at $$x=2$$
3
IIT-JEE 1993
Subjective
+3
-0
Find the equation of the normal to the curve
$$y = {\left( {1 + x} \right)^y} + {\sin ^{ - 1}}\left( {{{\sin }^2}x} \right)$$ at $$x=0$$
4
IIT-JEE 1993
Subjective
+5
-0
Let $$f\left( x \right) = \left\{ {\matrix{ { - {x^3} + {{\left( {{b^3} - {b^2} + b - 1} \right)} \over {\left( {{b^2} + 3b + 2} \right)}},} & {0 \le x < 1} \cr {2x - 3} & {1 \le x \le 3} \cr } } \right.$$

Find all possible real values of $$b$$ such that $$f(x)$$ has the smallest value at $$x=1$$.

JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12