1
IIT-JEE 1993
Subjective
+5
-0
Prove that $$\sum\limits_{r = 1}^k {{{\left( { - 3} \right)}^{r - 1}}\,\,{}^{3n}{C_{2r - 1}} = 0,} $$ where $$k = \left( {3n} \right)/2$$ and $$n$$ is an even positive integer.
2
IIT-JEE 1993
Subjective
+5
-0
Using mathematical induction, prove that
$${\tan ^{ - 1}}\left( {1/3} \right) + {\tan ^{ - 1}}\left( {1/7} \right) + ........{\tan ^{ - 1}}\left\{ {1/\left( {{n^2} + n + 1} \right)} \right\} = {\tan ^{ - 1}}\left\{ {n/\left( {n + 2} \right)} \right\}$$
3
IIT-JEE 1993
MCQ (More than One Correct Answer)
+2
-0.5
For $$0 < \phi < \pi /2,$$ if
$$x = $$$$\sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\phi ,y = \sum\limits_{n = 0}^\infty {{{\sin }^{2n}}\phi ,\,\,\,\,z = \sum\limits_{n = 0}^{} {{{\cos }^{2n}}\phi {{\sin }^{2n}}\phi } } } \infty $$ then
A
$$xyz = xz + y$$
B
$$xyz = xy + z$$
C
$$xyz = x + y + z$$
D
$$xyz = yz + x$$
4
IIT-JEE 1993
Fill in the Blanks
+2
-0
The vertices of a triangle are $$A\left( { - 1, - 7} \right)B\left( {5,\,1} \right)$$ and $$C\left( {1,\,4} \right).$$ The equation of the bisector of the angle $$\angle ABC$$ is ............... .
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12