1
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
Let x(t) be the input to a linear, time-invariant system. The required output is 4x(t-2). The transfer function of the system should be
A
4 e$$j4\pi f$$
B
2 e$$-j8\pi f$$
C
4 e$$-j4\pi f$$
D
2 e$$j8\pi f$$
2
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
The approximate Bode magnitude plot of a minimum-phase system is shown in figure. The transfer function of the system is GATE ECE 2003 Control Systems - Frequency Response Analysis Question 39 English
A
$${10^8}{{{{\left( {s + 0.1} \right)}^3}} \over {{{\left( {s + 10} \right)}^2}\left( {s + 100} \right)}}$$
B
$${10^7}{{{{\left( {s + 0.1} \right)}^3}} \over {{{\left( {s + 10} \right)}}\left( {s + 100} \right)}}$$
C
$${10^8}{{{{\left( {s + 0.1} \right)}^2}} \over {{{\left( {s + 10} \right)}^2}\left( {s + 100} \right)}}$$
D
$${10^9}{{{{\left( {s + 0.1} \right)}^3}} \over {\left( {s + 10} \right){{\left( {s + 100} \right)}^2}}}$$
3
GATE ECE 2003
MCQ (Single Correct Answer)
+2
-0.6
The zero, input response of a system given by the state space equation $$$\left[ {{{\mathop {{x_1}}\limits^ \bullet } \over {\mathop {{x_2}}\limits^ \bullet }}} \right] = \left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr } } \right]and\left[ {\matrix{ {{x_1}} & {\left( 0 \right)} \cr {{x_2}} & {\left( 0 \right)} \cr } } \right] = \left[ {\matrix{ 1 \cr 0 \cr } } \right]is$$$
A
$$\left[ {\matrix{ {t{e^t}} \cr t \cr } } \right]$$
B
$$\left[ {\matrix{ {{e^t}} \cr t \cr } } \right]$$
C
$$\left[ {\matrix{ {{e^t}} \cr {t{e^t}} \cr } } \right]$$
D
$$\left[ {\matrix{ t \cr {t{e^t}} \cr } } \right]$$
4
GATE ECE 2003
MCQ (Single Correct Answer)
+1
-0.3
A PD controller is used to compensate a system. Compared to the uncompensated system, the compensated system has
A
a higher type number.
B
reduced damping.
C
higher noise amplification.
D
larger transient overshoot.
EXAM MAP