1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two tangents drawn from $\mathrm{P}(1,7)$ to the circle $x^2+y^2=25$, touch the circle at Q and R respectively. The area of the quadrilateral PQOR is

A
16 sq. units
B
36 sq. units
C
25 sq. units
D
49 sq. units
2
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\left(m_i, \frac{1}{m_i}\right), m_i>0, i=1,2,3,4$ are four distinct points on a circle, then the product $\mathrm{m}_1 \mathrm{~m}_2 \mathrm{~m}_3 \mathrm{~m}_4$ is equal to

A
$-1$
B
1
C
0
D
2
3
MHT CET 2023 14th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The centre of the circle whose radius is 3 units and touching internally the circle $$x^2+y^2-4 x-6 y-12=0$$ at the point $$(-1,-1)$$ is

A
$$\left(\frac{4}{5}, \frac{7}{5}\right)$$
B
$$\left(\frac{4}{5}, \frac{-7}{5}\right)$$
C
$$\left(\frac{-4}{5}, \frac{-7}{5}\right)$$
D
$$\left(\frac{-4}{5}, \frac{7}{5}\right)$$
4
MHT CET 2023 14th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the line $$x-2 y=\mathrm{m}(\mathrm{m} \in \mathrm{Z})$$ intersects the circle $$x^2+y^2=2 x+4 y$$ at two distinct points, then the number of possible values of $m$ are

A
8
B
9
C
10
D
11
MHT CET Subjects
EXAM MAP