1
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the tangent to the circle, given by $x=5 \cos \theta, y=5 \sin \theta$ at the point $\theta=\frac{\pi}{3}$ on it , is

A
$x-\sqrt{3} y=-5$
B
$x+\sqrt{3} y=10$
C
$\sqrt{3} x+y=5 \sqrt{3}$
D
$\sqrt{3} x-y=0$
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let PQ and RS be tangents at the extremities of the diameter PR of a circle of radius $r$. If PS and RQ intersect at a point X on the circumference of the circle, then 2 r equals

A
$\sqrt{\mathrm{PQ} \cdot \mathrm{RS}}$
B
$\frac{\mathrm{PQ}+\mathrm{RS}}{2}$
C
$\frac{2 \cdot P Q \cdot R S}{P Q+R S}$
D
$\sqrt{\frac{\mathrm{PQ}^2+\mathrm{RS}^2}{2}}$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The abscissae of the two points A and B are the roots of the equation $x^2+2 a x-b^2=0$ and their ordinates are roots of the equation $y^2+2 p y-q^2=0$. Then the equation of the circle with AB as diameter is given by

A
$x^2+y^2-2 \mathrm{a} x-2 \mathrm{p} y+\left(\mathrm{b}^2+\mathrm{q}^2\right)=0$
B
$x^2+y^2-2 \mathrm{a} x-2 \mathrm{p} y-\left(\mathrm{b}^2+\mathrm{q}^2\right)=0$
C
$x^2+y^2+2 \mathrm{a} x+2 \mathrm{p} y+\left(\mathrm{b}^2+\mathrm{q}^2\right)=0$
D
$x^2+y^2+2 \mathrm{a} x+2 \mathrm{p} y-\left(\mathrm{b}^2+\mathrm{q}^2\right)=0$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the circle, concentric with the circle $x^2+y^2-6 x-4 y-12=0$ and touching the $\mathrm{X}$-axis is

A
$x^2+y^2-6 x-4 y+5=0$
B
$x^2+y^2-6 x-4 y+17=0$
C
$x^2+y^2-6 x-4 y+9=0$
D
$x^2+y^2-6 x-4 y+4=0$
MHT CET Subjects
EXAM MAP