1
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equations of the tangents to the circle $x^2+y^2=36$ which are perpendicular to the line $5 x+y-2=0$ are

A
$x-5 y \pm 6 \sqrt{26}=0$
B
$x+5 y \pm 6 \sqrt{26}=0$
C
$\quad x-5 y \pm \sqrt{26}=0$
D
$\quad x+5 y \pm \sqrt{26}=0$
2
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the circle with centre at origin pass through the vertices of an equilateral triangle ABC . If $A \equiv(2,4)$, then the length of the median through A is

A
$2 \sqrt{5}$ units
B
$3 \sqrt{5}$ units
C
$4 \sqrt{5}$ units
D
$6 \sqrt{5}$ units
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equations of the tangents to the circle $x^2+y^2=36$ which are perpendicular to the line $5 x+y=2$, are

A
$\quad x+5 y \pm 6 \sqrt{26}=0$
B
$\quad x-5 y \pm 6 \sqrt{26}=0$
C
$\quad 5 x-y \pm 6 \sqrt{26}=0$
D
$\quad 5 x+y \pm 6 \sqrt{26}=0$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the tangent and the normal at the point $(\sqrt{3}, 1)$ to the circle $x^2+y^{2 }=4$, and the X -axis form a triangle, then the area (in sq.units) of this triangle is

A
$\frac{1}{\sqrt{2}}$
B
$-\frac{2}{\sqrt{3}}$
C
$\frac{4}{\sqrt{3}}$
D
$\frac{1}{3}$
MHT CET Subjects
EXAM MAP