1
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the tangent and the normal at the point $(\sqrt{3}, 1)$ to the circle $x^2+y^{2 }=4$, and the X -axis form a triangle, then the area (in sq.units) of this triangle is

A
$\frac{1}{\sqrt{2}}$
B
$-\frac{2}{\sqrt{3}}$
C
$\frac{4}{\sqrt{3}}$
D
$\frac{1}{3}$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The locus of point of intersection of the tangents to the circle $x^2+y^2=16$, such that the angle between them is $60^{\circ}$, is

A
$x^2+y^2=4$
B
$x^2+y^2=64$
C
$x^2+y^2=32$
D
$x^2+y^2=48$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The minimum distance and maximum distance of the point $\mathrm{P}(2,-7)$ from the circle $x^2+y^2-14 x-10 y-151=0$ are respectively _______units

A
2,28
B
5,25
C
6,24
D
3,27
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of integral values of $k$ for which $x^2+y^2+\mathrm{k} x+(1-\mathrm{k}) y+5=0$ represents a circle whose radius cannot exceeds 5 , are

A
16
B
15
C
14
D
12
MHT CET Subjects
EXAM MAP