1
MHT CET 2023 14th May Morning Shift
+2
-0

If the line $$x-2 y=\mathrm{m}(\mathrm{m} \in \mathrm{Z})$$ intersects the circle $$x^2+y^2=2 x+4 y$$ at two distinct points, then the number of possible values of $m$ are

A
8
B
9
C
10
D
11
2
MHT CET 2023 13th May Evening Shift
+2
-0

The abscissae of two points $$A$$ and $$B$$ are the roots of the equation $$x^2+2 a x-b^2=0$$ and their ordinates are roots of the equation $$y^2+2 p y-q^2=0$$. Then, the equation of the circle with $$A B$$ as diameter is given by

A
$$x^2+y^2-2 a x-2 p y+\left(b^2+q^2\right)=0$$
B
$$x^2+y^2-2 a x-2 p y-\left(b^2+q^2\right)=0$$
C
$$x^2+y^2+2 a x+2 p y+\left(b^2+q^2\right)=0$$
D
$$x^2+y^2+2 a x+2 p y-\left(b^2+q^2\right)=0$$
3
MHT CET 2023 13th May Morning Shift
+2
-0

The parametric equations of the curve $$x^2+y^2+a x+b y=0$$ are

A
$$x=\frac{\mathrm{a}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \cos \theta, y=\frac{\mathrm{b}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \sin \theta$$
B
$$x=\frac{\mathrm{a}}{2}-\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \cos \theta, y=\frac{\mathrm{b}}{2}-\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \sin \theta$$
C
$$x=-\frac{\mathrm{a}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \cos \theta, y=-\frac{\mathrm{b}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \sin \theta$$
D
$$x=-\frac{\mathrm{a}}{2}-\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \cos \theta, y=-\frac{\mathrm{b}}{2}-\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{4}} \sin \theta$$
4
MHT CET 2023 12th May Evening Shift
+2
-0

The circles $$x^2+y^2+2 \mathrm{a} x+\mathrm{c}=0$$ and $$x^2+y^2+2 b y+c=0$$ touch each other externally, if

A
$$\frac{1}{\mathrm{a}^2}-\frac{1}{\mathrm{~b}^2}=\frac{1}{\mathrm{c}}$$
B
$$\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}=\frac{1}{\mathrm{c}}$$
C
$$\frac{1}{\mathrm{a}^2}+\frac{1}{\mathrm{~b}^2}=\frac{1}{\mathrm{c}^2}$$
D
$$\frac{1}{\mathrm{a}^2}-\frac{1}{\mathrm{~b}^2}=\frac{1}{\mathrm{c}^2}$$
EXAM MAP
Medical
NEET