1
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the circle, concentric with the circle $2 x^2+2 y^2-6 x+8 y+1=0$ and double of its area is

A
$2 x^2+2 y^2-6 x+8 y+11=0$
B
$2 x^2+2 y^2-6 x+8 y-11=0$
C
$4 x^2+4 y^2-12 x+16 y-21=0$
D
$4 x^2+4 y^2-12 x+16 y+21=0$
2
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the sides of a rectangle are given by the equations $x=-2, x=6, y=-2, y=5$, then the equation of the circle, drawn on the diagonal of this rectangle as its diameter, is

A
$x^2+y^2+4 x+3 y+22=0$
B
$x^2+y^2-4 x+3 y-22=0$
C
$x^2+y^2-4 x-3 y-22=0$
D
$x^2+y^2+4 x-3 y+22=0$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of common tangents to the circles $x^2+y^2-x=0$ and $x^2+y^2+x=0$ is /are

A
1
B
2
C
3
D
4
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The parametric equations of the circle $x^2+y^2-\mathrm{a} x-b y=0$ are

A
$x=\frac{\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{2} \cos \theta, y=\frac{\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{2} \sin \theta$
B
$x=\frac{-\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \sin \theta, y=\frac{-\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \cos \theta$
C
$x=\frac{\mathrm{a}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{2}} \sin \theta, y=\frac{\mathrm{b}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{2}} \cos \theta$
D
$x=\frac{\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \cos \theta, y=\frac{\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \sin \theta$
MHT CET Subjects
EXAM MAP