1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equations of the tangents to the circle $x^2+y^2=36$ which are perpendicular to the line $5 x+y=2$, are

A
$\quad x+5 y \pm 6 \sqrt{26}=0$
B
$\quad x-5 y \pm 6 \sqrt{26}=0$
C
$\quad 5 x-y \pm 6 \sqrt{26}=0$
D
$\quad 5 x+y \pm 6 \sqrt{26}=0$
2
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the tangent and the normal at the point $(\sqrt{3}, 1)$ to the circle $x^2+y^{2 }=4$, and the X -axis form a triangle, then the area (in sq.units) of this triangle is

A
$\frac{1}{\sqrt{2}}$
B
$-\frac{2}{\sqrt{3}}$
C
$\frac{4}{\sqrt{3}}$
D
$\frac{1}{3}$
3
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The locus of point of intersection of the tangents to the circle $x^2+y^2=16$, such that the angle between them is $60^{\circ}$, is

A
$x^2+y^2=4$
B
$x^2+y^2=64$
C
$x^2+y^2=32$
D
$x^2+y^2=48$
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The minimum distance and maximum distance of the point $\mathrm{P}(2,-7)$ from the circle $x^2+y^2-14 x-10 y-151=0$ are respectively _______units

A
2,28
B
5,25
C
6,24
D
3,27
MHT CET Subjects
EXAM MAP