1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The tangent to the circle $x^2+y^2=5$ at $(1,-2)$ also touches the circle $x^2+y^2-8 x+6 y+20=0$ then the co-ordinates of the corresponding point of contact is

A
$(3,-1)$
B
$(-3,-1)$
C
$(3,1)$
D
$(-3,1)$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the concentric circle, with the circle $\mathrm{C}_1$ having equation $x^2+y^2-6 x-4 y-12=0$ and having double area compared to the area of $\mathrm{C}_1$, is

A
$x^2+y^2-6 x-4 y=27$
B
$x^2+y^2-6 x-4 y=13$
C
$x^2+y^2-6 x-4 y=50$
D
$x^2+y^2-6 x-4 y=37$
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Two tangents drawn from $\mathrm{P}(1,7)$ to the circle $x^2+y^2=25$, touch the circle at Q and R respectively. The area of the quadrilateral PQOR is

A
16 sq. units
B
36 sq. units
C
25 sq. units
D
49 sq. units
4
MHT CET 2024 2nd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\left(m_i, \frac{1}{m_i}\right), m_i>0, i=1,2,3,4$ are four distinct points on a circle, then the product $\mathrm{m}_1 \mathrm{~m}_2 \mathrm{~m}_3 \mathrm{~m}_4$ is equal to

A
$-1$
B
1
C
0
D
2
MHT CET Subjects
EXAM MAP