1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the sides of a rectangle are given by the equations $x=-2, x=6, y=-2, y=5$, then the equation of the circle, drawn on the diagonal of this rectangle as its diameter, is

A
$x^2+y^2+4 x+3 y+22=0$
B
$x^2+y^2-4 x+3 y-22=0$
C
$x^2+y^2-4 x-3 y-22=0$
D
$x^2+y^2+4 x-3 y+22=0$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The number of common tangents to the circles $x^2+y^2-x=0$ and $x^2+y^2+x=0$ is /are

A
1
B
2
C
3
D
4
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The parametric equations of the circle $x^2+y^2-\mathrm{a} x-b y=0$ are

A
$x=\frac{\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{2} \cos \theta, y=\frac{\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{2} \sin \theta$
B
$x=\frac{-\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \sin \theta, y=\frac{-\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \cos \theta$
C
$x=\frac{\mathrm{a}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{2}} \sin \theta, y=\frac{\mathrm{b}}{2}+\sqrt{\frac{\mathrm{a}^2+\mathrm{b}^2}{2}} \cos \theta$
D
$x=\frac{\mathrm{a}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \cos \theta, y=\frac{\mathrm{b}}{2}+\frac{\sqrt{\mathrm{a}^2+\mathrm{b}^2}}{4} \sin \theta$
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the tangent to the circle, given by $x=5 \cos \theta, y=5 \sin \theta$ at the point $\theta=\frac{\pi}{3}$ on it , is

A
$x-\sqrt{3} y=-5$
B
$x+\sqrt{3} y=10$
C
$\sqrt{3} x+y=5 \sqrt{3}$
D
$\sqrt{3} x-y=0$
MHT CET Subjects
EXAM MAP