1
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance between lines $\bar{r}=(\hat{i}+2 \hat{j}-\hat{k})+\lambda(2 \hat{i}+\hat{j}-3 \hat{k})$ and $\bar{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\mu(\hat{i}-\hat{j}+\hat{k})$ is

A
$\frac{4 \sqrt{2}}{19}$ units
B
$\frac{3 \sqrt{2}}{\sqrt{19}}$ units
C
$\frac{5 \sqrt{2}}{\sqrt{19}}$ units
D
$\frac{2 \sqrt{2}}{\sqrt{19}}$ units
2
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-\mathrm{k}}{2}=\frac{\mathrm{z}}{1}$ intersect, then the value of k is

A
$\frac{3}{2}$
B
$\frac{9}{2}$
C
$-\frac{2}{9}$
D
$-\frac{3}{2}$
3
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The projection of $\overline{\mathrm{AB}}$ on $\overline{\mathrm{CD}}$, where $A \equiv(2,-3,0), B \equiv(1,-4,-2), C \equiv(4,6,8)$ and $\mathrm{D} \equiv(7,0,10)$ is

A
$\frac{1}{\sqrt{6}}$
B
$\frac{1}{7}$
C
$\frac{4}{\sqrt{6}}$
D
$\frac{4}{7}$
4
MHT CET 2024 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane through the point $(2,-1,-3)$ and parallel to the lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$ is

A
$8 x+y-13 z+27=0$
B
$2 x+y+z=0$
C
$3 x-y-z-10=0$
D
$8 x+14 y+13 z+37=0$
MHT CET Subjects
EXAM MAP