1
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point $(1,1,1)$ and through the line of intersection of $x+2 y-z+1=0$ and $3 x-y-4 z+3=0$ is

A
$\quad 4 x-3 y-2 z+1=0$
B
$3 x-2 y+2 z-3=0$
C
$8 x-5 y-11 \mathrm{z}+8=0$
D
$5 x-4 y+2 z-3=0$
2
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the foot of the perpendicular drawn from the origin to a plane is $\mathrm{P}(-1,-1,2)$, then equation of the plane is

A

$x+y-2 z+6 \doteq 0$

B

$2 x+y+z+1=0$

C

$x+y+2 z-2=0$

D

$x-y-z+2=0$

3
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The angle between lines whose direction cosines satisfy the equation $l+m+n=0$ and $l^2-\mathrm{m}^2-\mathrm{n}^2=0$, is

A

$\frac{\pi}{2}$

B

$\frac{\pi}{3}$

C

$\frac{\pi}{4}$

D

$\frac{\pi}{6}$

4
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A triangle ABC is formed by $\mathrm{A}(1,-1,0)$, $B(3,5,3), C(-11,-5,6)$. The equation of internal angle bisector of angle $A$ is

A

$\frac{(1-x)}{2}=\frac{y-(-1)}{2}=\frac{\mathrm{z}}{3}$

B

$\frac{x+1}{2}=\frac{y-1}{2}=\frac{z}{3}$

C

$\frac{x+2}{1}=\frac{y-2}{1}=\frac{z}{3}$

D

$\frac{x-2}{1}=\frac{y+3}{2}=\frac{z}{3}$

MHT CET Subjects
EXAM MAP