1
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane containing the line $\frac{x+1}{2}=\frac{y+2}{1}=\frac{z-2}{3}$ and the point $(1,-1,3)$ is

A
$x-2 y-3=0$
B
$2 x+y-1=0$
C
$3 x-2 z+3=0$
D
$2 x-y-\mathrm{z}=0$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The line L is passing through $(1,2,3)$. The distance of any point on the line L from the line $\overline{\mathrm{r}}=(3 \lambda-1) \hat{\mathrm{i}}+(-2 \lambda+3) \hat{\mathrm{j}}+(4+\lambda) \hat{\mathrm{k}}$ is constant. Then the line L does not pass through the point

A
$(4,0,4)$
B
$(-2,4,2)$
C
$(7,-2,5)$
D
$(-5,6,2)$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the plane $\overline{\mathrm{r}}=(\hat{\mathrm{i}}-\hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})+\mu(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}})$ from the origin is

A
$\frac{7}{\sqrt{38}}$ units
B
$\frac{1}{\sqrt{38}}$ units
C
$\frac{5}{\sqrt{38}}$ units
D
$\frac{2}{\sqrt{38}}$ units
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the angle between the line $x=\frac{y-1}{2}=\frac{z-3}{\lambda}$ and the plane $x+2 y+3 z=4$ is $\cos ^{-1} \sqrt{\frac{5}{14}}$, then the value of $\lambda$ is

A
$\frac{1}{3}$
B
$\frac{4}{5}$
C
$\frac{2}{3}$
D
$\frac{2}{5}$
MHT CET Subjects
EXAM MAP