1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of plane through the point $(2,-1,-3)$ and parallel to lines $\frac{x-1}{3}=\frac{y+2}{2}=\frac{z}{-4}$ and $\frac{x}{2}=\frac{y-1}{-3}=\frac{z-2}{2}$ is

A
$8 x+14 y+13 z-37=0$
B
$8 x-14 y-13 z-34=0$
C
$8 x-14 y-13 z+37=0$
D
$8 x+14 y+13 z+37=0$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane, passing through the intersection of the planes $x+y+z=1$ and $2 x+3 y-z+4=0$ and parallel to $Y$-axis is

A
$x+4 z-1=0$
B
$x+4 z-7=0$
C
$x-4 z+7=0$
D
$x-4 z+1=0$
3
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A line with positive direction cosines passes through the point $\mathrm{P}(2,-1,2)$ and makes equal angles with co-ordinate axes. The line meets the plane $2 x+y+z=9$ at point Q. Then the length of the line segment PQ equals

A
1 units
B
$\sqrt{2}$ units
C
$\sqrt{3}$ units
D
2 units
4
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the distance between the plane Ax-2y+z $=\mathrm{d}$ and the plane containing the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-2}{3}=\frac{y-3}{4}=\frac{z-4}{5}$ is $\sqrt{6}$ units, then $|d|$ is

A
1
B
$\sqrt{6}$
C
2
D
6
MHT CET Subjects
EXAM MAP