The distance between the line $\overline{\mathrm{r}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+\hat{\mathrm{k}}+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})$ and the plane $\overline{\mathrm{r}} \cdot(2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}})=4$ is
The angle between the lines whose direction cosines are $\frac{-\sqrt{3}}{4}, \frac{1}{4}, \frac{-\sqrt{3}}{2}$ and $\frac{-\sqrt{3}}{4}, \frac{1}{4}, \frac{\sqrt{3}}{2}$ is
The length of the altitude through the point $D$ of tetrahedron where the vertices of the tetrahedron are $A(2,3,1), B(4,1,-2), C(6,3,7), D(-5,-4,8)$, is
The angle between the lines $\frac{x-1}{l}=\frac{y+1}{m}=\frac{z}{n}$ and $\frac{x+1}{\mathrm{~m}}=\frac{y-3}{\mathrm{n}}=\frac{\mathrm{z}-1}{l}$, where $l>\mathrm{m}>\mathrm{n}$ and $1, \mathrm{~m}, \mathrm{n}$ are roots of the equation $x^3+x^2-4 x-4=0$, is