The Cartesian equation of the plane $\overline{\mathrm{r}}=(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}})$ is
If the line $\frac{x-3}{2}=\frac{y+5}{-1}=\frac{z+2}{2}$ lies in the plane $\alpha x+3 y-z+\beta=0$, then values of $\alpha$ and $\beta$ respectively are ….
The lines $\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$ and $\overline{\mathrm{r}}=(4 \hat{\mathrm{i}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})$ are
The lines $\frac{x-0}{1}=\frac{y-2}{2}=\frac{z+3}{\lambda}$ and $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{\lambda}$ are coplanar and $p$ is the plane containing these lines, then which of following point does not lie on the plane.