1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the lines $\frac{x-1}{l}=\frac{y+1}{m}=\frac{z}{n}$ and $\frac{x+1}{\mathrm{~m}}=\frac{y-3}{\mathrm{n}}=\frac{\mathrm{z}-1}{l}$, where $l>\mathrm{m}>\mathrm{n}$ and $1, \mathrm{~m}, \mathrm{n}$ are roots of the equation $x^3+x^2-4 x-4=0$, is

A
$\cos ^{-1}\left(\frac{2}{9}\right)$
B
$\cos ^{-1}\left(\frac{-4}{9}\right)$
C
$\cos ^{-1}\left(\frac{2}{3}\right)$
D
$\cos ^{-1}\left(\frac{1}{9}\right)$
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $\mathrm{P}(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+15=0$ is

A
7 units
B
6 units
C
8 units
D
10 units
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shortest distance between the lines $\bar{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$ is

A
$\frac{1}{\sqrt{5}}$ units
B
$\frac{6}{\sqrt{5}}$ units
C
$\frac{2}{\sqrt{5}}$ units
D
$\frac{3}{\sqrt{5}}$ units
4
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the distance of the point $\mathrm{P}(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0$ is 5 units, then the foot of the perpendicular from P to the plane is

A
$\left(2, \frac{2}{3}, \frac{-10}{3}\right)$
B
$\left(\frac{8}{3}, \frac{7}{3}, \frac{-4}{3}\right)$
C
$\left(\frac{4}{3}, \frac{2}{3}, \frac{-8}{3}\right)$
D
$\left(\frac{8}{3}, \frac{4}{3}, \frac{-7}{3}\right)$
MHT CET Subjects
EXAM MAP