The angle between the lines $\frac{x-1}{l}=\frac{y+1}{m}=\frac{z}{n}$ and $\frac{x+1}{\mathrm{~m}}=\frac{y-3}{\mathrm{n}}=\frac{\mathrm{z}-1}{l}$, where $l>\mathrm{m}>\mathrm{n}$ and $1, \mathrm{~m}, \mathrm{n}$ are roots of the equation $x^3+x^2-4 x-4=0$, is
The distance of the point $\mathrm{P}(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+15=0$ is
The shortest distance between the lines $\bar{r}=(4 \hat{i}-\hat{j})+\lambda(\hat{i}+2 \hat{j}-3 \hat{k})$ and $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(2 \hat{i}+4 \hat{j}-5 \hat{k})$ is
If the distance of the point $\mathrm{P}(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0$ is 5 units, then the foot of the perpendicular from P to the plane is