1
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the lines $$\frac{x-1}{4}=\frac{y-3}{1}=\frac{z}{8}$$ and $$\frac{x-2}{2}=\frac{y+1}{2}=\frac{z-4}{1}$$ is

A
$$\cos ^{-1}\left(\frac{2}{3}\right)$$
B
$$\cos ^{-1}\left(\frac{1}{2}\right)$$
C
$$\cos ^{-1}\left(\frac{3}{4}\right)$$
D
$$\cos ^{-1}\left(\frac{1}{3}\right)$$
2
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the line $$r=(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\lambda(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}+2 \hat{\mathbf{k}})$$ is parallel to the plane $$r \cdot(3 \hat{i}-2 \hat{\mathbf{j}}+m \hat{\mathbf{k}})=10$$, then the value of $$m$$ is

A
$$-$$2
B
3
C
2
D
$$-$$3
3
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The points $$A(-a,-b), B(0,0), C(a, b)$$ and $$D\left(a^2, a b\right)$$ are

A
vertices of a square
B
vertices of a parallelogram
C
collinear
D
vertices of a rectangle
4
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+2
-0

The cosine of the angle included between the lines $$\mathbf{r}=(2 \hat{\mathbf{i}}+\hat{\mathbf{j}}-2 \hat{\mathbf{k}})+\lambda(\hat{\mathbf{i}}-2 \hat{\mathbf{j}}-2 \hat{\mathbf{k}})$$ and $$\mathbf{r}=(\hat{\mathbf{i}}+\hat{\mathbf{j}}+3 \hat{\mathbf{k}})+\mu(3 \hat{\mathbf{i}}+2 \hat{\mathbf{j}}-6 \hat{\mathbf{k}})$$ where $$\lambda, \mu \in R$$ is.

A
$$\frac{3}{21}$$
B
$$\frac{17}{21}$$
C
$$\frac{13}{21}$$
D
$$\frac{11}{21}$$
MHT CET Subjects
EXAM MAP