1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{P}(2,3,6)$ be a point in space and Q be a point on the line $\bar{r}=(\hat{i}-\hat{j}+2 \hat{k})+\mu(-3 \hat{i}+\hat{j}+5 \hat{k})$. Then the value of $\mu$ for which vector $\overline{\mathrm{PQ}}$ is parallel to the plane $x-4 y+4 z=1$ is

A
$\frac{13}{6}$
B
$-\frac{6}{13}$
C
$\frac{6}{13}$
D
$-\frac{13}{6}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Distance between the parallel lines $\frac{x}{3}=\frac{y-1}{-2}=\frac{z}{1}$ and $\frac{x+4}{3}=\frac{y-3}{-2}=\frac{z+2}{1}$ is

A
$\sqrt{\frac{6}{7}}$ units
B
$\sqrt{\frac{3}{7}}$ units
C
$\sqrt{\frac{3}{14}}$ units
D
$\sqrt{\frac{5}{14}}$ units
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane, passing through the mid point of the line segment of join of the points $\mathrm{P}(1,2,5)$ and $\mathrm{Q}(3,4,3)$ and perpendicular to it, is

A
$x+y-z+1=0$
B
$x+y-z-1=0$
C
$x+y+z+1=0$
D
$x-y-z+1=0$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area of the triangle, whose vertices are $A \equiv(1,-1,2), B \equiv(2,1,-1)$ and $C \equiv(3,-1,2)$, is

A
$2 \sqrt{3}$ sq.units
B
$4 \sqrt{13}$ sq.units
C
$\sqrt{13}$ sq.units
D
$4 \sqrt{3}$ sq.units
MHT CET Subjects
EXAM MAP