In Young's double slit experiment, the intensity on screen at a point where path difference is $\frac{\lambda}{4}$ is $\frac{K}{2}$. The intensity at a point when path difference is ' $\lambda$ ' will be
In Fraunhofer diffraction pattern, slit width is 0.2 mm and screen is at 2 m away from the lens. If the distance between the first minimum on either side of the central maximum is 1 cm , the wavelength of light used is
In Young's double slit experiment let 'd' be the distance between two slits and 'D' be the distance between the slits and the screen. Using a monochromatic source of wavelength ' $\lambda$ ', in an interference pattern, third minimum is observed exactly in front of one of the slits. If at the same point on the screen first minimum is to be obtained, the required change in the wavelength is [ $\mathrm{d} \& \mathrm{D}$ are not changed].