1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In a diffraction pattern due to single slit of width ' $a$ ', the first minimum is observed at an angle $30^{\circ}$ when light of wavelength $5000 \mathop A\limits^o$ is incident on the slit. The first secondary maximum is observed at an angle $\left[\sin 30=\frac{1}{2}\right]$

A
$\sin ^{-1}\left(\frac{1}{2}\right)$
B
$\sin ^{-1}\left(\frac{3}{4}\right)$
C
$\sin ^{-1}\left(\frac{1}{4}\right)$
D
$\sin ^{-1}\left(\frac{3}{5}\right)$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In biprism experiment, if $5^{\text {th }}$ bright band with wavelength $\lambda_1$ coincides with $6^{\text {th }}$ dark band with wavelength $\lambda_2$ then the ratio $\left(\lambda_1 / \lambda_2\right)$ is

A
$\frac{7}{9}$
B
$\frac{10}{11}$
C
$\frac{11}{10}$
D
$\frac{9}{7}$
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

In young's double slit experiment, the $\mathrm{n}^{\text {th }}$ maximum of wavelength $\lambda_1$ is at a distance of $y_1$ from the central maximum. When the wavelength of the source is changed to $\lambda_2,\left(\frac{\mathrm{n}}{3}\right)^{\text {th }}$ maximum is at a distance of $y_2$ from its central maximum. The ratio $\frac{y_1}{y_2}$ is

A
$\frac{3 \lambda_1}{\lambda_2}$
B
$\frac{3 \lambda_2}{\lambda_1}$
C
$\frac{\lambda_1}{3 \lambda_2}$
D
$\frac{\lambda_2}{3 \lambda_1}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

In the Young's double slit experiment, the intensity at a point on the screen, where the path difference is $\lambda(\lambda=$ wavelength $)$ is $\beta$. The intensity at a point where the path difference is $\lambda / 3$, will be $\left.\cos \frac{\pi}{3}=1 / 2\right]$

A
$\beta$
B
$\beta / 2$
C
$\frac{\beta}{4}$
D
$\beta / 8$
MHT CET Subjects
EXAM MAP