In an interference experiment, the $\mathrm{n}^{\text {th }}$ bright fringe for light of wavelength $\lambda_1(\mathrm{n}=0,1,2,3 \ldots)$ coincides with the $\mathrm{m}^{\text {th }}$ dark fringe for light of wavelength $\lambda_2(\mathrm{~m}=1,2,3 \ldots)$. The ratio $\frac{\lambda_1}{\lambda_2}$ is
A single slit diffraction pattern is formed with light of wavelength $6195 \mathop A\limits^o$. The second secondary maximum for this wavelength coincides with the third secondary maximum in the pattern for light of wavelength ' $\lambda_0$ '. The value of ' $\lambda_0$ ' is
When wavefronts pass from denser medium to rarer medium, the width of the wavefront
A diffraction pattern is obtained using a beam of red light. If red light is replaced by blue light then