1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the distance of the point $\mathrm{P}(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0$ is 5 units, then the foot of the perpendicular from P to the plane is

A
$\left(2, \frac{2}{3}, \frac{-10}{3}\right)$
B
$\left(\frac{8}{3}, \frac{7}{3}, \frac{-4}{3}\right)$
C
$\left(\frac{4}{3}, \frac{2}{3}, \frac{-8}{3}\right)$
D
$\left(\frac{8}{3}, \frac{4}{3}, \frac{-7}{3}\right)$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane containing the line $\frac{x-2}{3}=\frac{y+1}{2}=\frac{z-4}{-2}$ and the point $(0,5,0)$ is

A
$2 x-4 y-3 z+20=0$
B
$2 x+8 y+11 z-40=0$
C
$8 x-5 y+z+25=0$
D
$\quad x-4 y+3 z+20=0$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the plane passing through the point of intersection of the planes $2 x-y+z-3=0$ and $4 x-3 y+5 z+9=0$ and parallel to the line $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z-3}{5}$ is $\alpha x+\beta y+\gamma z+d=0$ Then $\alpha+\beta+\gamma+d=$

A
48
B
-48
C
84
D
45
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $(2,4,0)$ from the point of intersection of the lines $\frac{x+6}{3}=\frac{y}{2}=\frac{z+1}{1}$ and $\frac{x-7}{4}=\frac{y-9}{3}=\frac{z-4}{2}$ is

A
3 units
B
$3 \sqrt{3}$ units
C
2 units
D
$2 \sqrt{3}$ units
MHT CET Subjects
EXAM MAP