An electron of mass '$$m$$' and a photon have same energy '$$E$$'. The ratio of de-Broglie wavelength of electron to the wavelength of photon is $$(\mathrm{c}=$$ velocity of light)
When a photon enters glass from air, which one of the following quantity does not change?
The light of wavelength '$$\lambda$$' is incident on the surface of metal of work function $$\phi$$ and emits the electron. The maximum velocity of electron emitted is [$$\mathrm{m}=$$ mass of electron and $$\mathrm{h}=$$ Planck's constant, $$\mathrm{c}=$$ velocity of light]
Photons of energy $$10 \mathrm{~eV}$$ are incident on a photosensitive surface of threshold frequency $$2 \times 10^{15} \mathrm{~Hz}$$. The kinetic energy in $$\mathrm{eV}$$ of the photoelectrons emitted is
[Planck's constant $$\mathrm{h}=6.63 \times 10^{34} \mathrm{~Js}$$ ]