1
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

A triangle ABC is formed by $\mathrm{A}(1,-1,0)$, $B(3,5,3), C(-11,-5,6)$. The equation of internal angle bisector of angle $A$ is

A

$\frac{(1-x)}{2}=\frac{y-(-1)}{2}=\frac{\mathrm{z}}{3}$

B

$\frac{x+1}{2}=\frac{y-1}{2}=\frac{z}{3}$

C

$\frac{x+2}{1}=\frac{y-2}{1}=\frac{z}{3}$

D

$\frac{x-2}{1}=\frac{y+3}{2}=\frac{z}{3}$

2
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The mirror image of the point $\mathrm{P}(-1,2,-4)$ in the plane $x-y-2 z+1=0$ is

A

$(3,-4,1)$

B

$(-3,4,0)$

C

$(4,1,0)$

D

$(2,-3,0)$

3
MHT CET 2025 26th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the plane $\frac{x}{2}+\frac{y}{3}+\frac{z}{6}=1$ cuts the co-ordinate axes at points $A, B, C$ respectively, then area of the triangle ABC is

A
$\sqrt{14}$ sq. units
B
$3 \sqrt{14}$ sq. units
C
$\frac{1}{\sqrt{14}}$ sq. units
D
$3 \sqrt{13}$ sq. units
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the plane $\frac{x}{2}-\frac{y}{3}-\frac{\mathrm{z}}{5}=1$ cuts the co-ordinate axes in points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, then the area of the triangle $A B C$ is

A
$\frac{17}{2}$ sq. units.
B
$\frac{19}{2}$ sq. units
C
$\frac{11}{2}$ sq. units
D
$\frac{15}{2}$ sq. units
MHT CET Subjects
EXAM MAP