1
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A random variable $X$ takes the values $0,1,2,3$, $\qquad$ with probability

$\mathrm{P}(\mathrm{X}=x)=\mathrm{k}(x+1)\left(\frac{1}{5}\right)^x$, where k is a constant.

Then $\mathrm{P}(\mathrm{X}=0)$ is

A
$\frac{16}{25}$
B
$\frac{7}{25}$
C
$\frac{19}{25}$
D
$\frac{18}{25}$
2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

A fair coin is tossed 99 times. If X is the number of times head occur then $\mathrm{P}[\mathrm{X}=\mathrm{r}]$ is maximum when $\mathrm{r}=$

A
48
B
49
C
51
D
52
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If X is a binomial variable with range $\{0,1,2,3,4\}$ and $\mathrm{P}(\mathrm{X}=3)=3 \mathrm{P}(\mathrm{X}=4)$ then the parameter ' $p$ ' of the binomial distribution is

A
$\frac{1}{4}$
B
$\frac{3}{4}$
C
$\frac{1}{3}$
D
$\frac{2}{5}$
4
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Two cards are drawn simultaneously from a well shuffled pack of 52 cards. If X is the random variable of getting queens, then the value of $2 E(X)+3 E\left(X^2\right)$ for the number of queens is

A
$\frac{132}{221}$
B
$\frac{108}{221}$
C
$\frac{176}{221}$
D
$\frac{68}{221}$
MHT CET Subjects
EXAM MAP