A random variable $X$ has the following probability distribution
$$ \begin{array}{|l|c|c|c|c|c|} \hline \mathrm{X}: & 0 & 1 & 2 & 3 & 4 \\ \hline \mathrm{P}(\mathrm{X}): & \mathrm{k} & 2 \mathrm{k} & 4 \mathrm{k} & 2 \mathrm{k} & \mathrm{k} \\ \hline \end{array} $$
then the value of $\mathrm{P}(1 \leqslant \mathrm{X}<4 \mid \mathrm{X} \leqslant 2)=$
If two numbers $p$ and $q$ are chosen randomly from the set $\{1,2,3,4\}$, one by one, with replacement, then the probability of getting $\mathrm{p}^2 \geq 4 \mathrm{q}$ is
If $X \sim B(n, p)$ then $\frac{P(X=k)}{P(X=k-1)}=$
Let X be a discrete random variable. The probability distribution of X is given below
$$ \begin{array}{|c|c|c|c|} \hline \mathrm{X} & 30 & 10 & -10 \\ \hline \mathrm{P}(\mathrm{X}) & \frac{1}{5} & \mathrm{~A} & \mathrm{~B} \\ \hline \end{array} $$
and $\mathrm{E}(\mathrm{X})=4$, then the value of AB is equal to