A particle of mass ' $m$ ' is performing uniform circular motion along a circular path of radius ' $r$ '. Its angular momentum about the axis passing through the centre and perpendicular to the plane is ' $L$ '. The kinetic energy of the particle is
A particle of mass ' $m$ ' performs uniform circular motion of radius ' $r$ ' with linear speed ' $v$ ' under the application of force ' $F$ '. If ' $m$ ', ' $v$ ' and $' \mathrm{r}$ ' are all increased by $20 \%$ the necessary change in force required to maintain the particle in uniform circular motion, is
A particle rotates in a horizontal circle of radius 'R' in a conical funnel with constant speed 'V'. The inner surface of the funnel is smooth. The height of the plane of the circle from the vertex of the funnel is (g-acceleration due to gravity)
For a particle in uniform circular motion