1
MHT CET 2023 9th May Evening Shift
+1
-0

A particle of mass '$$\mathrm{m}$$' moves along a circle of radius '$$r$$' with constant tangential acceleration. If K.E. of the particle is '$$E$$' by the end of third revolution after beginning of the motion, then magnitude of tangential acceleration is

A
$$\frac{\mathrm{E}}{2 \pi \mathrm{rm}}$$
B
$$\frac{\mathrm{E}}{6 \pi \mathrm{rm}}$$
C
$$\frac{\mathrm{E}}{8 \pi \mathrm{rm}}$$
D
$$\frac{\mathrm{E}}{4 \pi \mathrm{rm}}$$
2
MHT CET 2023 9th May Evening Shift
+1
-0

A simple pendulum of length $$2 \mathrm{~m}$$ is given a horizontal push through angular displacement of $$60^{\circ}$$. If the mass of bob is 200 gram, the angular velocity of the bob will be (Take Acceleration due to gravity $$=10 \mathrm{~m} / \mathrm{s}^2$$ ) $$\left(\sin 30^{\circ}=\cos 60^{\circ}=0.5, \cos 30^{\circ}=\sin 60^{\circ}=\sqrt{3} / 2\right)$$

A
$$2 \sqrt{2} ~\mathrm{rad} / \mathrm{s}$$
B
$$3 \sqrt{2} ~\mathrm{rad} / \mathrm{s}$$
C
$$2 \sqrt{2.5} ~\mathrm{rad} / \mathrm{s}$$
D
$$3 \sqrt{2.5} ~\mathrm{rad} / \mathrm{s}$$
3
MHT CET 2023 9th May Evening Shift
+1
-0

A particle at rest starts moving with constant angular acceleration $$4 ~\mathrm{rad} / \mathrm{s}^2$$ in circular path. At what time the magnitudes of its tangential acceleration and centrifugal acceleration will be equal?

A
0.4 s
B
0.5 s
C
0.8 s
D
1.0 s
4
MHT CET 2022 11th August Evening Shift
+1
-0

A bucket containing water is revolved in a vertical circle of radius $$r$$. To prevent the water from falling down, the minimum frequency of revolution required is

($$\mathrm{g}=$$ acceleration due to gravity)

A
$$2 \pi \sqrt{\frac{\mathrm{r}}{\mathrm{g}}}$$
B
$$\frac{1}{2 \pi} \sqrt{\frac{\mathrm{r}}{\mathrm{g}}}$$
C
$$\frac{1}{2 \pi} \sqrt{\frac{\mathrm{g}}{\mathrm{r}}}$$
D
$$2 \pi \sqrt{\frac{\mathrm{g}}{\mathrm{r}}}$$
EXAM MAP
Medical
NEET
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12