1
MHT CET 2023 10th May Evening Shift
+1
-0

A particle performing uniform circular motion of radius $$\frac{\pi}{2} \mathrm{~m}$$ makes '$$\mathrm{x}$$' revolutions in time '$$t$$'. Its tangential velocity is

A
$$\frac{\pi \mathrm{x}}{\mathrm{t}}$$
B
$$\frac{\pi x^2}{t}$$
C
$$\frac{\pi^2 x^2}{t}$$
D
$$\frac{\pi^2 \mathrm{x}}{\mathrm{t}}$$
2
MHT CET 2023 10th May Morning Shift
+1
-0

A body of mass 200 gram is tied to a spring of spring constant $$12.5 \mathrm{~N} / \mathrm{m}$$, while other end of spring is fixed at point '$$O$$'. If the body moves about '$$O$$' in a circular path on a smooth horizontal surface with constant angular speed $$5 \mathrm{~rad} / \mathrm{s}$$ then the ratio of extension in the spring to its natural length will be

A
1 : 2
B
1 : 1
C
2 : 3
D
2 : 5
3
MHT CET 2023 9th May Evening Shift
+1
-0

A particle of mass '$$\mathrm{m}$$' moves along a circle of radius '$$r$$' with constant tangential acceleration. If K.E. of the particle is '$$E$$' by the end of third revolution after beginning of the motion, then magnitude of tangential acceleration is

A
$$\frac{\mathrm{E}}{2 \pi \mathrm{rm}}$$
B
$$\frac{\mathrm{E}}{6 \pi \mathrm{rm}}$$
C
$$\frac{\mathrm{E}}{8 \pi \mathrm{rm}}$$
D
$$\frac{\mathrm{E}}{4 \pi \mathrm{rm}}$$
4
MHT CET 2023 9th May Evening Shift
+1
-0

A simple pendulum of length $$2 \mathrm{~m}$$ is given a horizontal push through angular displacement of $$60^{\circ}$$. If the mass of bob is 200 gram, the angular velocity of the bob will be (Take Acceleration due to gravity $$=10 \mathrm{~m} / \mathrm{s}^2$$ ) $$\left(\sin 30^{\circ}=\cos 60^{\circ}=0.5, \cos 30^{\circ}=\sin 60^{\circ}=\sqrt{3} / 2\right)$$

A
$$2 \sqrt{2} ~\mathrm{rad} / \mathrm{s}$$
B
$$3 \sqrt{2} ~\mathrm{rad} / \mathrm{s}$$
C
$$2 \sqrt{2.5} ~\mathrm{rad} / \mathrm{s}$$
D
$$3 \sqrt{2.5} ~\mathrm{rad} / \mathrm{s}$$
EXAM MAP
Medical
NEET