1
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

A child starts running from rest along a circular track of radius $r$ with constant tangential acceleration a. After time $t$ he feels that slipping of shoes on the ground has started. The coefficient of friction between shoes and the ground is

[g = acceleration due to gravity]

A
$\frac{\left[a^4 t^4+a^2 r^2\right]^{\frac{1}{2}}}{g r}$
B
$\frac{\left[a^4 t^4+a^2 r^2\right]}{r g}$
C
$\frac{\left[a^2 t^2+a^4 r^4\right]}{r g}$
D
$\frac{\left[a^4 t^4-a^2 r^2\right]^{\frac{1}{2}}}{r g}$
2
MHT CET 2020 19th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

A body is moving along a circular track of radius 100 m with velocity $20 \mathrm{~m} / \mathrm{s}$. Its tangential acceleration is $3 \mathrm{~m} / \mathrm{s}^2$, then its resultant acceleration will be

A
$5 \mathrm{~m} / \mathrm{s}^2$
B
$4 \mathrm{~m} / \mathrm{s}^2$
C
$2 \mathrm{~m} / \mathrm{s}^2$
D
$3 \mathrm{~m} / \mathrm{s}^2$
3
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

A particle starting from rest moves along the circumference of a circle of radius $$r$$ with angular acceleration $$\alpha$$. The magnitude of the average velocity, in the time it completes the small angular displacement $$\theta$$ is

A
$$r\left(\frac{2}{\alpha \theta}\right)^2$$
B
$$r\left(\frac{\alpha \theta}{2}\right)^2$$
C
$$\rho\left(\frac{\alpha \theta}{2}\right)$$
D
$$r\left(\frac{\alpha \theta}{2}\right)^{\frac{1}{2}}$$
4
MHT CET 2020 16th October Evening Shift
MCQ (Single Correct Answer)
+1
-0

A particle of mass $$m$$ is performing UCM along a circle of radius $$r$$. The relation between centripetal acceleration $$a$$ and kinetic energy $$E$$ is given by

A
$$a=\frac{2 E}{m r}$$
B
$$a=2 E m$$
C
$$a=\frac{E}{m r}$$
D
$$a=\left(\frac{2 E}{m r}\right)^2$$
MHT CET Subjects
EXAM MAP