1
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+1
-0
A simple pendulum oscillates with an angular amplitude $\theta$. If the maximum tension in the string is 4 times the minimum tension then the value of $\theta$ is
2
MHT CET 2025 21st April Evening Shift
MCQ (Single Correct Answer)
+1
-0
A pendulum bob has a speed $4 \mathrm{~m} / \mathrm{s}$ at its lowest position. The pendulum is 1 m long. When the length of the string makes an angle of $60^{\circ}$ with the vertical, the speed of the bob at that position is (acceleration due to gravity, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^2$, $\cos 60^{\circ}=0.5$ )
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+1
-0
For a particle moving in a circle with constant angular speed, which of the following statements is 'false'?
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+1
-0
A particle performing uniform circular motion of radius $\frac{\pi}{2} \mathrm{~m}$ makes $x$ revolutions in time $t$. Its tangential velocity is
Questions Asked from Circular Motion (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
MHT CET 2025 21st April Evening Shift (2)
MHT CET 2025 20th April Morning Shift (1)
MHT CET 2025 19th April Evening Shift (2)
MHT CET 2024 16th May Evening Shift (3)
MHT CET 2024 16th May Morning Shift (1)
MHT CET 2024 15th May Evening Shift (1)
MHT CET 2024 11th May Evening Shift (1)
MHT CET 2024 10th May Evening Shift (2)
MHT CET 2024 10th May Morning Shift (1)
MHT CET 2024 9th May Evening Shift (1)
MHT CET 2024 4th May Evening Shift (1)
MHT CET 2024 3rd May Evening Shift (1)
MHT CET 2024 2nd May Evening Shift (1)
MHT CET 2024 2nd May Morning Shift (2)
MHT CET 2023 14th May Morning Shift (3)
MHT CET 2023 13th May Evening Shift (1)
MHT CET 2023 12th May Evening Shift (2)
MHT CET 2023 12th May Morning Shift (2)
MHT CET 2023 11th May Evening Shift (1)
MHT CET 2023 11th May Morning Shift (1)
MHT CET 2023 10th May Evening Shift (1)
MHT CET 2023 10th May Morning Shift (1)
MHT CET 2023 9th May Evening Shift (3)
MHT CET 2022 11th August Evening Shift (3)
MHT CET 2021 24th September Evening Shift (2)
MHT CET 2021 24th September Morning Shift (1)
MHT CET 2021 23rd September Evening Shift (2)
MHT CET 2021 22th September Morning Shift (3)
MHT CET 2021 21th September Evening Shift (1)
MHT CET 2021 21th September Morning Shift (1)
MHT CET 2021 20th September Evening Shift (1)
MHT CET 2020 19th October Evening Shift (2)
MHT CET 2020 16th October Evening Shift (2)
MHT CET 2020 16th October Morning Shift (2)
MHT CET 2019 3rd May Morning Shift (2)
MHT CET 2019 2nd May Evening Shift (2)
MHT CET 2019 2nd May Morning Shift (2)
MHT CET Subjects
Physics
Mechanics
Units & Measurement and Dimensions Vector Algebra Motion Laws of Motion Circular Motion Work, Energy and Power Center of Mass and Collision Rotational Motion Gravitation Simple Harmonic Motion Fluid Mechanics Elasticity Waves Heat and Thermodynamics
Optics
Electromagnetism
Electrostatics Current Electricity Capacitor Moving Charges and Magnetism Magnetism and Matter Electromagnetic Waves Electromagnetic Induction Alternating Current
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Atomic Structure States of Matter Thermodynamics Chemical Equilibrium Ionic Equilibrium Liquid Solution Redox Reactions Surface Chemistry Solid State Electrochemistry Chemical Kinetics Nuclear Chemistry
Inorganic Chemistry
Periodic Table and Periodicity Chemical Bonding and Molecular Structure Metallurgy Hydrogen and It's Compounds s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Environmental Chemistry
Organic Chemistry
Mathematics
Algebra
Sets and Relations Logarithms Quadratic Equations Sequences and Series Binomial Theorem Permutations and Combinations Probability Vector Algebra Three Dimensional Geometry Matrices and Determinants Statistics Mathematical Reasoning Linear Programming Complex Numbers
Trigonometry
Trigonometric Ratios & Identities Trigonometric Equations Inverse Trigonometric Functions Properties of Triangles
Calculus
Functions Limits, Continuity and Differentiability Differentiation Application of Derivatives Indefinite Integration Definite Integration Area Under The Curves Differential Equations
Coordinate Geometry