A particle at rest starts moving with constant angular acceleration $$4 ~\mathrm{rad} / \mathrm{s}^2$$ in circular path. At what time the magnitudes of its tangential acceleration and centrifugal acceleration will be equal?
The angle of banking '$$\theta$$' for a meter gauge railway line is given by $$\theta=\tan ^{-1}\left(\frac{1}{20}\right)$$. What is the elevation of the outer rail above the inner rail?
A particle moves in a circular orbit of radius '$$r$$' under a central attractive force, $$F=-\frac{k}{r}$$, where $$\mathrm{k}$$ is a constant. The periodic time of its motion is proportional to
A particle at rest starts moving with a constant angular acceleration of $$4 \mathrm{~rad} / \mathrm{s}^2$$ in a circular path. At what time the magnitude of its centripetal acceleration and tangential acceleration will be equal?