1
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A line L is passing through points $\mathrm{A}(1,3,2)$ and $\mathrm{B}(2,2,1)$. If mirror image of point $\mathrm{P}(1,1,-1)$ in the line L is $(x, y, z)$ then $x+y+\mathrm{z}=$

A

$\frac{10}{3}$

B

$\frac{13}{3}$

C

$\frac{14}{3}$

D

$\frac{23}{3}$

2
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\frac{6 x-6}{18}=\frac{y+1}{3}=\frac{z-1}{5} \quad$ and $\frac{3 x+6}{12}=\frac{y-1}{3}=\frac{z+1}{2}$ are $\ldots$

A

intersecting at point $(1,-1,2)$

B

intersecting at right angles

C

do not intersect

D

intersecting at point $(3,1,-1)$

3
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z}{1}$ intersects the XY plane and the YZ plane at points A and B respectively. The equation of line through the points A and B is

A

$[\overline{\mathrm{r}}-(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})] \times\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}\right)=\overline{0}$

B

$[\overline{\mathrm{r}}+(\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})] \times\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}+\frac{1}{2} \hat{\mathrm{k}}\right)=\overline{0}$

C

$\overline{\mathrm{r}}=(-\hat{\mathrm{i}}-2 \hat{\mathrm{j}}+0 \hat{\mathrm{k}})+\lambda\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}\right)$

D

$\quad \overline{\mathrm{r}}=(\hat{\mathrm{i}}+2 \hat{\mathrm{j}})+\lambda\left(-\hat{\mathrm{i}}+\frac{1}{2} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}\right)$

4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The distance of the point $\mathrm{A}(3,-4,5)$ from the plane $2 x+5 y-6 z=16$ measured along the line $\frac{x}{2}=\frac{y}{1}=\frac{z}{-2}$ is

A
$\frac{60}{7}$ units
B
$\frac{7}{60}$ units
C
$\frac{1}{7}$ units
D
$\frac{2}{7}$ units
MHT CET Subjects
EXAM MAP