1
MHT CET 2025 25th April Morning Shift
MCQ (Single Correct Answer)
+1
-0
A single slit diffraction pattern is formed with light of wavelength $6384 \mathop {\rm{A}}\limits^{\rm{o}}$. The second secondary maximum for this wavelength coincides with the third secondary maximum in the pattern for light of wavelength ' $\lambda_0$ '. The value of ' $\lambda_0$ ' is
A
$4242 \mathop {\rm{A}}\limits^{\rm{o}}$
B
$4560 \mathop {\rm{A}}\limits^{\rm{o}}$
C
$5474 \mathop {\rm{A}}\limits^{\rm{o}}$
D
$6384 \mathop {\rm{A}}\limits^{\rm{o}}$
2
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+1
-0

In Young's double slit experiment, the intensity of light at a point on the screen where the path difference is $\lambda$ is ' $I$ '. The intensity at a point where the path difference is $\lambda / 6$ is $\left[\cos \frac{\pi}{6}=\frac{\sqrt{3}}{2}\right] [\lambda=$ wavelength of light $][\cos \pi=-1]$

A
I
B
$\frac{3 \mathrm{I}}{4}$
C
$\frac{1}{2}$
D
$\frac{\mathrm{I}}{4}$
3
MHT CET 2025 23rd April Evening Shift
MCQ (Single Correct Answer)
+1
-0

In Young's double slit experiment, the light of wavelength ' $\lambda$ ' is used. The intensity at a point on the screen is ' T ' where the path difference is $\lambda \frac{-}{4}$. If ' $\mathrm{I}_0$ ' denotes the maximum intensity then the ratio of ' $\mathrm{I}_0$ ' to ' I ' is $\left(\cos 45^{\circ}=1 / \sqrt{2}\right)$

A
$2: 1$
B
$4: 1$
C
$8: 1$
D
$12: 1$
4
MHT CET 2025 23rd April Morning Shift
MCQ (Single Correct Answer)
+1
-0

In Young's double slit experiment the wavelength of light used is $6000 \mathop {\rm{A}}\limits^{\rm{o}}$, the screen is 40 cm from the slits and the fringe width is 0.012 cm , the distance between two slits is

A
0.024 cm
B
2.4 cm
C
0.24 cm
D
0.2 cm
MHT CET Subjects
EXAM MAP