1
GATE EE 2009
MCQ (Single Correct Answer)
+2
-0.6
In the chopper circuit shown, the main thyristor $$\left( {{T_M}} \right)$$ is operated at a duty ratio of $$0.8$$ which is much larger than the commutation interval. If the maximum allowable reapplied $${{dV} \over {dt}}$$ on $${T_M}$$ is $$50$$ $$V/\mu s,$$
what should be the theoretical minimum value of $${C_1}?$$. Assume current ripple through $${L_0}$$ to be negligible.
what should be the theoretical minimum value of $${C_1}?$$. Assume current ripple through $${L_0}$$ to be negligible.
2
GATE EE 2008
MCQ (Single Correct Answer)
+2
-0.6
In the circuit shown in the figure, the switch is operated at a duty cycle of $$0.5.$$ A large capacitor current is connected across the load. The inductor current is assumed to be continuous.
The average voltage across the load and the average current through the diode will respectively be
3
GATE EE 2007
MCQ (Single Correct Answer)
+2
-0.6
The circuit in the figure is current commutated $$dc$$ $$-$$ $$dc$$ chopper where, $$T{h_M}$$ is the main $$SCR$$ and $$T{h_AUX}$$ is the auxiliary $$SCR$$. The load current is constant at $$10$$ $$A.$$
$$T{h_M}$$ is $$ON$$
$$T{h_AUX}$$ is trigged at $$t=0.$$ $$T{h_M}$$ is turned $$OFF$$ between.
$$T{h_M}$$ is $$ON$$
$$T{h_AUX}$$ is trigged at $$t=0.$$ $$T{h_M}$$ is turned $$OFF$$ between.
4
GATE EE 2006
MCQ (Single Correct Answer)
+2
-0.6
A voltage commutation circuit is shown in figure. If the turn off time of the $$SCR$$$$s$$ is $$50$$ $$\mu \sec $$ and as safety margin of $$2$$ is considered, what will be the approximate minimum value of capacitor required for proper commutation?
Questions Asked from Choppers and Commutation Techniques (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE EE 2024 (1)
GATE EE 2023 (1)
GATE EE 2022 (1)
GATE EE 2018 (2)
GATE EE 2017 Set 2 (1)
GATE EE 2017 Set 1 (1)
GATE EE 2015 Set 1 (3)
GATE EE 2015 Set 2 (1)
GATE EE 2014 Set 1 (1)
GATE EE 2013 (2)
GATE EE 2012 (1)
GATE EE 2011 (1)
GATE EE 2010 (2)
GATE EE 2009 (1)
GATE EE 2008 (1)
GATE EE 2007 (1)
GATE EE 2006 (3)
GATE EE 2005 (1)
GATE EE 2004 (2)
GATE EE 2003 (1)
GATE EE 2002 (1)
GATE EE 2000 (1)
GATE EE Subjects
Electric Circuits
Electromagnetic Fields
Signals and Systems
Electrical Machines
Engineering Mathematics
General Aptitude
Power System Analysis
Electrical and Electronics Measurement
Analog Electronics
Control Systems
Power Electronics